'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z))} Details: We have computed the following set of weak (innermost) dependency pairs: { ++^#(nil(), y) -> c_0() , ++^#(x, nil()) -> c_1() , ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} The usable rules are: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z))} The estimated dependency graph contains the following edges: {++^#(.(x, y), z) -> c_2(++^#(y, z))} ==> {++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} {++^#(.(x, y), z) -> c_2(++^#(y, z))} ==> {++^#(.(x, y), z) -> c_2(++^#(y, z))} {++^#(.(x, y), z) -> c_2(++^#(y, z))} ==> {++^#(x, nil()) -> c_1()} {++^#(.(x, y), z) -> c_2(++^#(y, z))} ==> {++^#(nil(), y) -> c_0()} {++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} ==> {++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} {++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} ==> {++^#(.(x, y), z) -> c_2(++^#(y, z))} {++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} ==> {++^#(x, nil()) -> c_1()} {++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} ==> {++^#(nil(), y) -> c_0()} We consider the following path(s): 1) { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z))) , ++^#(x, nil()) -> c_1()} The usable rules for this path are the following: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z))) , ++^#(x, nil()) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(x, nil()) -> c_1()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(x, nil()) -> c_1()} Details: Interpretation Functions: ++(x1, x2) = [1] x1 + [1] x2 + [1] nil() = [0] .(x1, x2) = [1] x1 + [1] x2 + [0] ++^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1() = [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [15] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {++^#(.(x, y), z) -> c_2(++^#(y, z))} and weakly orienting the rules { ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(x, nil()) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {++^#(.(x, y), z) -> c_2(++^#(y, z))} Details: Interpretation Functions: ++(x1, x2) = [1] x1 + [1] x2 + [1] nil() = [3] .(x1, x2) = [1] x1 + [1] x2 + [8] ++^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1() = [0] c_2(x1) = [1] x1 + [7] c_3(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} Weak Rules: { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(x, nil()) -> c_1()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} Weak Rules: { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(x, nil()) -> c_1()} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { nil_0() -> 2 , ._0(2, 2) -> 3 , ._0(2, 3) -> 3 , ._0(3, 2) -> 3 , ._0(3, 3) -> 3 , ++^#_0(2, 2) -> 4 , ++^#_0(2, 3) -> 4 , ++^#_0(3, 2) -> 4 , ++^#_0(3, 3) -> 4 , c_1_0() -> 4 , c_2_0(4) -> 4} 2) { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} The usable rules for this path are the following: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} Details: We apply the weight gap principle, strictly orienting the rules { ++(nil(), y) -> y , ++(x, nil()) -> x} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { ++(nil(), y) -> y , ++(x, nil()) -> x} Details: Interpretation Functions: ++(x1, x2) = [1] x1 + [1] x2 + [1] nil() = [0] .(x1, x2) = [1] x1 + [1] x2 + [0] ++^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1() = [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {++^#(.(x, y), z) -> c_2(++^#(y, z))} and weakly orienting the rules { ++(nil(), y) -> y , ++(x, nil()) -> x} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {++^#(.(x, y), z) -> c_2(++^#(y, z))} Details: Interpretation Functions: ++(x1, x2) = [1] x1 + [1] x2 + [1] nil() = [7] .(x1, x2) = [1] x1 + [1] x2 + [8] ++^#(x1, x2) = [1] x1 + [1] x2 + [0] c_0() = [0] c_1() = [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} Weak Rules: { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++(nil(), y) -> y , ++(x, nil()) -> x} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} Weak Rules: { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++(nil(), y) -> y , ++(x, nil()) -> x} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { nil_0() -> 2 , ._0(2, 2) -> 3 , ._0(2, 3) -> 3 , ._0(3, 2) -> 3 , ._0(3, 3) -> 3 , ++^#_0(2, 2) -> 4 , ++^#_0(2, 3) -> 4 , ++^#_0(3, 2) -> 4 , ++^#_0(3, 3) -> 4 , c_2_0(4) -> 4} 3) { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z))) , ++^#(nil(), y) -> c_0()} The usable rules for this path are the following: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z))) , ++^#(nil(), y) -> c_0()} Details: We apply the weight gap principle, strictly orienting the rules { ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(nil(), y) -> c_0()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(nil(), y) -> c_0()} Details: Interpretation Functions: ++(x1, x2) = [1] x1 + [1] x2 + [1] nil() = [0] .(x1, x2) = [1] x1 + [1] x2 + [0] ++^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1() = [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [15] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {++^#(.(x, y), z) -> c_2(++^#(y, z))} and weakly orienting the rules { ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(nil(), y) -> c_0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {++^#(.(x, y), z) -> c_2(++^#(y, z))} Details: Interpretation Functions: ++(x1, x2) = [1] x1 + [1] x2 + [1] nil() = [3] .(x1, x2) = [1] x1 + [1] x2 + [8] ++^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1() = [0] c_2(x1) = [1] x1 + [7] c_3(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} Weak Rules: { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(nil(), y) -> c_0()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { ++(.(x, y), z) -> .(x, ++(y, z)) , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++^#(++(x, y), z) -> c_3(++^#(x, ++(y, z)))} Weak Rules: { ++^#(.(x, y), z) -> c_2(++^#(y, z)) , ++(nil(), y) -> y , ++(x, nil()) -> x , ++^#(nil(), y) -> c_0()} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { nil_0() -> 2 , ._0(2, 2) -> 3 , ._0(2, 3) -> 3 , ._0(3, 2) -> 3 , ._0(3, 3) -> 3 , ++^#_0(2, 2) -> 4 , ++^#_0(2, 3) -> 4 , ++^#_0(3, 2) -> 4 , ++^#_0(3, 3) -> 4 , c_0_0() -> 4 , c_2_0(4) -> 4}